Probing the pseudoscalar top-Higgs coupling through CP-odd observables

Nicolas Mileo - mileo@fisica.unlp.edu.ar

(Universidad Nacional de La Plata, IFLP-CONICET)

In collaboration with Ken Kiers, Alejandro Szynkman, Daniel Crane and Ethan Gegner JHEP07(2016)056

HP2.6 ICAS-UNSAM (Buenos Aires, Argentina) - 07/09/2016

Outline

- Introduction and motivations.
- Theoretical framework: differential xs for $t\bar{t}H$ production and triple products.
- CP-odd observables:
 - Asymmetry and Angular distributions: definitions and results.
 - Observables not depending on t and \overline{t} spin vectors.
 - Observables that do not require full reconstruction of p_t and p_t.
- Comments on the experimental feasibility.
- Summary and concluding remarks.

Introduction & Motivations

- Precise characterization of the Higgs boson very important. In particular, Higgs couplings to fermions: CP-transformation properties and consistency with the SM prediction.
- top-Higgs coupling, phenomenological and theoretical motivations:
 - Governs ggF production mechanism and contributes to the decay to $\gamma\gamma$.
 - Particular features of top quark: most massive fermion (SM *t*-*H* coupling O(1)), decays before it can hadronize (spin information preserved in the decay products).
 - Involved in the scalar-field naturalness problem (leading dependence on Λ in corrections to m_H).
 - Possible important role in the mechanism for EWSB.
- Indirect constraints \rightarrow no NP particles in loops and/or rest of Higgs couplings standard:
 - Higgs boson production and decay rates (diphoton, digluon channels).
 - Electric dipole moments.
- Direct constraints \rightarrow processes with smaller cross sections ($H \rightarrow t\bar{t}$ kinematically forbidden): tH ($\bar{t}H$) and $t\bar{t}H$ productions
 - ▶ $tH(\bar{t}H)$ involves a diagram with H emitted from the intermediate $W \rightarrow$ dependent on κ_W (useful for determining the relative sign between κ_t and κ_W).
 - We focus on $t\bar{t}H$ production with $t\bar{t}$ decaying dileptonically.
- Several CP-even observables sensitive to $\kappa_t, \tilde{\kappa}_t$: invariant mass distributions, $p_T^H, \Delta \phi(t, \bar{t})$, etc \rightarrow not sensitive to the relative sign.
- CP-odd observables are required to disentangle the sign of $\kappa_t/\tilde{\kappa}_t$.
- Goal: Propose and test such observables, establish a hierarchy in sensitivity.

Theoretical Framework

• Consider the process $pp \to t (\to b\ell^+ \nu_\ell) \bar{t} (\to \bar{b}\ell^- \bar{\nu}_l) H$. Parametrization of the effective lagrangian for tH coupling:

$$\mathcal{L}_{t\bar{t}H} = -\frac{m_t}{v} (\kappa_t \bar{t}t + i\tilde{\kappa}_t \bar{t}\gamma_5 t) H$$

$$\Rightarrow \text{SM} (\kappa_t = 1, \tilde{\kappa}_t = 0), \text{CP-odd} (\kappa_t = 0, \tilde{\kappa}_t = 1), \text{CP-mixed} (\kappa_t \neq 0 \text{ and } \tilde{\kappa}_t \neq 0)$$

• "Factorized" tree-level expression for the differential xs (dominant contribution gg fusion):

$$d\sigma = \sum_{\substack{bl^+\nu_l\\ \text{spins spins}}} \sum_{\bar{b}l^-\bar{\nu}_l} \left(\frac{2}{\Gamma_t}\right)^2 \, d\sigma(gg \to t(n_t)\bar{t}(n_{\bar{t}})H) \, d\Gamma(t \to bl^+\nu_l) \, d\Gamma(\bar{t} \to \bar{b}l^-\bar{\nu}_l)$$

The spin four-vectors n_t and $n_{\bar{t}}$ are not arbitrary

$$n_t = -\frac{p_t}{m_t} + \frac{m_t}{(p_t \cdot p_{l+})}p_{l+}$$
$$n_{\tilde{t}} = \frac{p_{\tilde{t}}}{m_t} - \frac{m_t}{(p_{\tilde{t}} \cdot p_{l-})}p_{l-}$$

- Production and decay contributions linked by final-state kinematical variables in the spin four-vectors.
- Similar expression also valid for qq̄-initiated production.

Theoretical Framework

• In terms of $Q \equiv \frac{q_1 + q_2}{2}$, $q \equiv \frac{q_1 - q_2}{2}$, t, \bar{t}, n_t and $n_{\bar{t}} \rightarrow 15$ TPs $\epsilon_n = \epsilon_{\alpha\beta\gamma\delta} \mathbf{p}_i^{\alpha} \mathbf{p}_j^{\beta} \mathbf{p}_k^{\gamma} \mathbf{p}_l^{\delta}$ (not linearly independent):

$$d\sigma(gg \to t(n_t)\overline{t}(n_{\overline{t}})H) = \kappa_t^2 f_1(p_i \cdot p_j) + \tilde{\kappa}_t^2 f_2(p_i \cdot p_j) + \kappa_t \tilde{\kappa}_t \sum_{n=1}^{15} g_n(p_i \cdot p_j) \epsilon_n,$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

P-even P-even P-odd

 $d\Gamma(t \rightarrow b l^+ \nu_l)$ and $d\Gamma(\bar{t} \rightarrow \bar{b} l^- \bar{\nu}_l)$ are functions of $p_i \cdot p_j$ (P-even)

- P-even terms contribute to the total xs, no sensitivity to the relative sign ($\propto \kappa_t^2, \tilde{\kappa}_t^2$).
- P-odd terms do not contribute to the xs, but are sensitive to the relative sign ($\propto \kappa_t \tilde{\kappa}_t$)

• From the 15 TPs, focus on $\epsilon_1 \equiv \epsilon(t, \overline{t}, n_t, n_{\overline{t}}), \epsilon_2 \equiv \epsilon(Q, \overline{t}, n_t, n_{\overline{t}}) \text{ and } \epsilon_3 \equiv \epsilon(Q, t, n_t, n_{\overline{t}})$

- ▶ No dependence on *q* (cannot be expressed in terms of the momenta of final state particles).
- ▶ Include information on the decay products of both t and \overline{t} (via n_t and $n_{\overline{t}}$).

- We set κ_t = 1 and vary κ̃_t = 0, ±0.25, ±0.5, ±0.75, ±1. In particular, concentrate in benchmark scenarios: CP-even (κ_t = 1, κ̃_t = 0) and two CP-mixed cases (κ_t = 1, κ̃_t = ±1).
- 10⁵ events simulated with MadGraph5_aMC@NLO at parton level (different integrated luminosities for each $\tilde{\kappa}_t$).

Asymmetry:

• Asymmetry associated to a given TP ϵ :

$$\mathcal{A}(\epsilon) = \frac{N(\epsilon > 0) - N(\epsilon < 0)}{N(\epsilon > 0) + N(\epsilon > 0)}$$

• Results for $\epsilon_1 = \epsilon(t, \overline{t}, n_t, n_{\overline{t}}), \epsilon_2 = \epsilon(Q, \overline{t}, n_t, n_{\overline{t}}) \text{ and } \epsilon_3 = \epsilon(Q, t, n_t, n_{\overline{t}})$:

κ_t	$\tilde{\kappa}_t$	$\mathcal{A}(\epsilon_1)$	$\mathcal{A}(\epsilon_1)/\sigma_\mathcal{A}$	$\mathcal{A}(\epsilon_2)$	$\mathcal{A}(\epsilon_2)/\sigma_{\mathcal{A}}$	$\mathcal{A}(\epsilon_3)$	$\mathcal{A}(\epsilon_3)/\sigma_\mathcal{A}$
1	-1	0.0315	10.0	0.0332	10.5	-0.0307	-9.7
1	0	-0.0021	-0.7	0.0009	0.3	-0.0011	-0.3
1	1	-0.0379	-12.0	-0.0411	-13.0	0.0378	12.0

- Asymmetries provide clear separation between SM and CP-mixed cases, tipically of order 10σ.
- SM consistent with zero as expected.
- > Three asymmetries allow to determine the sign of $\tilde{\kappa}_t$, cases $\tilde{\kappa}_t = \pm 1$ effectively separated by more than 20σ .
- Sensitivity of A quite similar for the three TPs.
- Asymmetry not useful for discriminating between SM and pure pseudoscalar hypotheses $(\mathcal{A} \propto \kappa_t \tilde{\kappa}_t)$.

• Linear combinations of ϵ_1 , ϵ_2 and ϵ_3 . Discriminating power increased $\sim 2.8\sigma$ for

$$\epsilon_4 \equiv \epsilon_3 - \epsilon_2 = \epsilon(Q, t - \overline{t}, n_t, n_{\overline{t}})$$

In Q rest frame $\Rightarrow \epsilon_4 = Q^0(\vec{t} - \vec{t}) \cdot (\vec{n}_t \times \vec{n}_{\bar{t}})$

Angular distributions

• It is possible to associate angular distirbutions to the TPs. Example: $\epsilon_1 = \epsilon(t, \bar{t}, n_t, n_{\bar{t}})$ In the system $t + \bar{t} = 0$ with $\vec{t} \parallel + \hat{z}$:

$$\epsilon(t+\bar{t},\bar{t},n_t,n_{\bar{t}}) = M_{t\bar{t}} \,|\vec{t}| \,(\vec{n}_t \times \vec{n}_{\bar{t}})_z = M_{t\bar{t}} \,|\vec{t}| |\vec{n}_t| |\vec{n}_{\bar{t}}| \sin\theta_{n_t} \sin\theta_{n_{\bar{t}}} \sin\Delta\phi(n_t,n_{\bar{t}})$$

Sign of the TP determined by the sign of the angle $\Delta \phi(n_t, n_{\tilde{t}})$ (defined in the range $[-\pi, \pi]$) \Rightarrow distribution $dN/d\Delta \phi(n_t, n_{\tilde{t}})$ is related to $\mathcal{A}(\epsilon_1)$:

$$\mathcal{A} = 1 - 2 \frac{\mathcal{N}(\epsilon < 0)}{\mathcal{N}}$$
 and $\frac{\mathcal{N}(\epsilon < 0)}{\mathcal{N}} = \int_{-\pi \le \Delta \phi \le 0} \frac{1}{\mathcal{N}} \frac{d\mathcal{N}}{d\Delta \phi} d\Delta \phi.$

• Angular distributions associated to the TPs:

- 1. $\epsilon_1 = \epsilon(\mathbf{t}, \mathbf{\bar{t}}, \mathbf{n}_t, \mathbf{n}_{\bar{t}})$. $d\sigma/d\Delta\phi_1(n_t, n_{\bar{t}})$ in $t\bar{t}$ rest frame with $\mathbf{\bar{t}} \parallel + \hat{z}$. $\Delta\phi_1(n_t, n_{\bar{t}}) \equiv$ angular difference between the projections of n_t and $n_{\bar{t}}$ onto the plane \perp to $\mathbf{\bar{t}}$ (JHEP04(2014)004).
- 2. $\epsilon_2 = \epsilon(\mathbf{Q}, \mathbf{\bar{t}}, \mathbf{n}_t, \mathbf{n}_{\mathbf{\bar{t}}})$. $d\sigma/d\Delta\phi_2(n_t, n_{\mathbf{\bar{t}}})$ in Q rest frame with $\mathbf{\bar{t}} \parallel +2$. $\Delta\phi_2(n_t, n_{\mathbf{\bar{t}}}) \equiv$ angular difference between the projections of n_t and $n_{\mathbf{\bar{t}}}$ onto the plane \perp to $\mathbf{\bar{t}}$.
- 3. $\epsilon_3 = \epsilon(\mathbf{Q}, \mathbf{t}, \mathbf{n}_t, \mathbf{n}_{\bar{t}})$. $d\sigma/d\Delta\phi_3(n_t, n_{\bar{t}})$ in Q rest frame with $\vec{t} \parallel + \hat{z}$. $\Delta\phi_3(n_t, n_{\bar{t}}) \equiv$ angular difference between the projections of n_t and $n_{\bar{t}}$ onto the plane \perp to \vec{t} .
- Similar behaviour, can be fitted with the function $c_1 + c_2 \cos(\Delta \phi + \delta) \Rightarrow \mathcal{A} = -4c_2 \sin \delta$. For $\delta = 0, \pi$, $\mathcal{A} = 0$ but the distributions are clearly different \rightarrow allow to distinguish the SM from the pure CP-odd case.

- Fit using the function $c_1 + c_2 \cos(\Delta \phi + \delta)$.
- Phase shift δ between 0.7 and 0.8 (-0.8 and -0.7) for $\kappa_t = -\tilde{\kappa}_t = 1$ ($\kappa_t = \tilde{\kappa}_t = 1$). Slightly higher sensitivity in $\Delta \phi_1$ distribution.

CP-odd observables not depending on n_t and $n_{\bar{t}}$

 Other possibilities for constructing CP-odd observables. The TPs considered so far can be written in terms of five TPs that involve t, t
 t, H, ℓ⁺ and ℓ⁻:

$$\begin{aligned} \epsilon(\mathbf{t}, \overline{\mathbf{t}}, n_t, n_{\overline{\mathbf{t}}}) &= \frac{m_t^2}{(\mathbf{t}, \ell^+)(\overline{\mathbf{t}}, \ell^-)} \,\epsilon(\mathbf{t}, \overline{\mathbf{t}}, \ell^-, \ell^+), \\ \epsilon(Q, \overline{\mathbf{t}}, n_t, n_{\overline{\mathbf{t}}}) &= \frac{m_t^2}{(\mathbf{t}, \ell^+)(\overline{\mathbf{t}}, \ell^-)} \left(\epsilon(\mathbf{t}, \overline{\mathbf{t}}, \ell^-, \ell^+) + \epsilon(H, \overline{\mathbf{t}}, \ell^-, \ell^+) + \frac{(\mathbf{t}\cdot \ell^+)}{m_t^2} \epsilon(H, \overline{\mathbf{t}}, t, \ell^-)\right) \\ \epsilon(Q, \mathbf{t}, n_t, n_{\overline{\mathbf{t}}}) &= \frac{m_t^2}{(\mathbf{t}\cdot \ell^+)(\overline{\mathbf{t}}\cdot \ell^-)} \left(-\epsilon(\mathbf{t}, \overline{\mathbf{t}}, \ell^-, \ell^+) + \epsilon(H, t, \ell^-, \ell^+) + \frac{(\overline{\mathbf{t}}\cdot \ell^-)}{m_t^2} \epsilon(H, \overline{\mathbf{t}}, t, \ell^+)\right) \end{aligned}$$

• $\epsilon(H, \overline{t}, t, \ell^{-})$ and $\epsilon(H, \overline{t}, t, \ell^{+})$ negligible sensitivity \Rightarrow focus on $\epsilon_{5} \equiv \epsilon(t, \overline{t}, \ell^{-}, \ell^{+})$, $\epsilon_{6} \equiv \epsilon(H, \overline{t}, \ell^{-}, \ell^{+})$ and $\epsilon_{7} \equiv \epsilon(H, t, \ell^{-}, \ell^{+})$

κt	$\tilde{\kappa}_t$	$\mathcal{A}(\epsilon_5)$	$\mathcal{A}(\epsilon_5)/\sigma_\mathcal{A}$	$\mathcal{A}(\epsilon_6)$	$\mathcal{A}(\epsilon_6)/\sigma_\mathcal{A}$	$\mathcal{A}(\epsilon_7)$	$\mathcal{A}(\epsilon_7)/\sigma_\mathcal{A}$
1	-1	0.0315	10.0	-0.0134	-4.2	0.0111	3.5
1	0	-0.0021	-0.7	-0.0011	-0.3	0.0009	0.3
1	1	-0.0379	-12.0	0.0143	4.5	-0.0137	-4.3

- The sensitivity of A(\(\epsilon_5\)) clearly higher than A(\(\epsilon_6\)) and A(\(\epsilon_7\)).
- ► As expected A(ϵ₅) = A(ϵ₁)
- Test of linear combinations of ϵ_5, ϵ_6 and ϵ_7 , sensitivity enhanced for

 $\epsilon_8 = 2\epsilon_5 - \epsilon_6 + \epsilon_7 = \epsilon(t + \overline{t} + H, t - \overline{t}, \ell^+, \ell^-) \text{ in } t\overline{t}H \text{ rest frame } M_{t\overline{t}H}(\overline{t} - \overline{t}) \cdot (\overline{\ell}^+ \times \overline{\ell}^-)$

 \Rightarrow Only difference with combination ϵ_4 : $n_t, n_{\overline{t}} \leftrightarrow \ell^-, \ell^+$.

CP-odd observables not depending on t and \overline{t}

- All the above observables require the full reconstruction of t and t. Challenging due to the
 presence of two neutrinos in the final state. Possibilities:
 - Apply a kinematic reconstruction algorithm (kinematical equations from conservation of transverse momentum and from m_W and m_t constraints).
 - ▶ Define additional observables that make use of *b* and \overline{b} instead of *t* and \overline{t} . Modify the most sensitive TPs: $\epsilon_4 = \epsilon(Q, t \overline{t}, n_t, n_{\overline{t}})$ and $\epsilon_8 = \epsilon(t + \overline{t} + H, t \overline{t}, \ell^+, \ell^-)$.
- Replacement $t, \overline{t} \leftrightarrow b, \overline{b}$ in ϵ_8 :

$$\epsilon_9 = \epsilon(b + ar{b} + H, b - ar{b}, \ell^+, \ell^-)$$

In the bbH rest system the sign of e₉ is determined by (b − b) · (ℓ⁺ × ℓ[−]) (similar observable in Phys. Rev. D (2015) 015019).

κ_t	$\tilde{\kappa}_t$	$\mathcal{A}(\epsilon_9)$	$\mathcal{A}(\epsilon_9)/\sigma_\mathcal{A}$
1	-1	0.0171	5.4
1	0	0.0010	0.3
1	1	-0.0247	-7.8

• Sensitivity decreases $\sim 5\sigma$, but the observable may still discriminate the hypotheses.

• Proceed in similar manner with ϵ_4 . By using the definition of the spin vectors:

$$\epsilon_4 o \epsilon(\mathcal{Q}, t-\overline{t}, \ell^-, \ell^+) + rac{(\overline{t}\cdot\ell^-)}{m_t^2}\epsilon(\mathcal{Q}, t, \ell^+, \overline{t}) - rac{(t\cdot\ell^+)}{m_t^2}\epsilon(\mathcal{Q}, \overline{t}, t, \ell^-)$$

CP-odd observables not depending on t and \overline{t}

Replace t and \overline{t} by their visible parts $b + \ell^+$ and $\overline{b} + \ell^-$,

$$\epsilon_{10} = \epsilon(\tilde{Q}, c_{b\bar{b}}, \ell^-, \ell^+) - w_1 \epsilon(\tilde{Q}, b, \bar{b}, \ell^+) + w_2 \epsilon(\tilde{Q}, b, \bar{b}, \ell^-)$$

$$\begin{split} \tilde{Q} &\equiv (b+\ell^+ + \bar{b} + \ell^- + H)/2 \text{ (visible part of } Q\text{), } c_{b\bar{b}} \equiv (1-w_1) \, b - (1-w_2) \, \bar{b}, \\ w_1 &\equiv (\bar{b} \cdot \ell^-)/m_t^2 \text{ and } w_2 \equiv (b \cdot \ell^+)/m_t^2. \text{ Note that } \epsilon_{10} = \epsilon_9/2 \text{ for } w_1 = w_2 = 0. \end{split}$$

Results for the asymmetry:

κt	$\tilde{\kappa}_t$	$\mathcal{A}(\epsilon_{10})$	$\mathcal{A}(\epsilon_{10})/\sigma_{\mathcal{A}}$
1	$^{-1}$	-0.0213	-6.7
1	0	0.0031	1.0
1	1	0.0300	9.5

- Again sensitivity decreases with respect to ϵ_1 - ϵ_5 , but CP-mixed scenarios may be disentangled.
- Effective separation between the CP-mixed cases increases by about 3σ with respect to $\mathcal{A}(\epsilon_9)$ - ϵ_{10} contains information on the spin vectors (in ϵ_9 the leptons momenta are used).
 - -To obtain ϵ_{10} the visible parts of t and \overline{t} have been used (b and \overline{b} in the case of ϵ_9).

Experimental feasibility

- Number of events considered (10⁵) relatively large \Rightarrow reexamine most promising observables using sample sizes more attainable in the near future.
- Rough estimate for the HL-LHC: xs for $pp \rightarrow t (\rightarrow b\ell^+ \nu_\ell) \bar{t} (\rightarrow \bar{b}\ell^- \bar{\nu}_l) H (\ell = e, \mu)$ at $\sqrt{s} = 14 \text{ TeV} \sim 15.3 \text{ fb} \rightarrow N_{ev} \sim 15.3 \text{ fb} \times 3000 \text{ fb}^{-1} = 4.59 \times 10^4 \text{ (larger if } \tilde{\kappa}_t \neq 0 \text{ assuming } \kappa_t = 1).$
- Since selection cuts as well as efficiency related to momentum reconstruction reduce N_{ev} , we consider $N_{ev} = 5 \times 10^4$, 1×10^4 and 5×10^3 .

κt	κ _t	$\textit{N}_{\rm ev} = 5 \times 10^4$		$N_{ m ev} = 1 imes 10^4$		$N_{ m ev}=5 imes10^3$	
		$\mathcal{A}(\epsilon_4)$	$\mathcal{A}(\epsilon_4)/\sigma_\mathcal{A}$	$\mathcal{A}(\epsilon_4)$	$\mathcal{A}(\epsilon_4)/\sigma_\mathcal{A}$	$\mathcal{A}(\epsilon_4)$	$\mathcal{A}(\epsilon_4)/\sigma_\mathcal{A}$
1	-1	-0.0405	-9.1	-0.0426	-4.3	-0.0496	-3.5
1	0	0.0004	0.1	-0.0084	-0.8	-0.0004	-0.03
1	1	0.0443	9.9	0.0434	4.2	0.0420	3.0

• Results for $\mathcal{A}(\epsilon_4)$:

- For 5×10^4 events (close to the HL-LHC estimate) CP-mixed scenarios effectively separated by 19σ .
- Even with 5×10^3 the separation is 6.5σ .

Experimental feasibility

- Although t and \bar{t} would not need to be reconstructed to measure $\mathcal{A}(\epsilon_{10})$, still interesting to consider more conservative N_{ev} .
- Results for $\mathcal{A}(\epsilon_{10})$:

κt	κ _t	$N_{\rm ev} =$	$5 imes 10^4$	$N_{ m ev} = 1 imes 10^4$		
		$\mathcal{A}(\epsilon_{10})$	$\mathcal{A}(\epsilon_{10})/\sigma_{\mathcal{A}}$	$\mathcal{A}(\epsilon_{10})$	$\mathcal{A}(\epsilon_{10})/\sigma_{\mathcal{A}}$	
1	-1	-0.0270	-6.0	-0.0184	-1.8	
1	0	0.0022	0.5	-0.0086	-0.9	
1	1	0.0313	7.0	0.0380	3.8	

- Even with 10^4 events, the observable is able to distinguish the CP-mixed cases by 5.6σ .
- To be fully conclusive is necessary to include the effects of hadronization, detector resolution and reconstruction efficiencies as well as the study of the impact of the backgrounds.
- Nevertheless, this initial analysis shows that the proposed observables might be probed with luminosities of order 300-600 fb⁻¹ (depending on the value of $\tilde{\kappa}_t$).

Summary and conclusions

- Collection of CP-odd observables useful for disentangling the relative sign between κ_t and $\tilde{\kappa}_t$. Test of the sensitivity using different observables (asymmetries, angular distributions).
- From the expression for the differential xs $\Rightarrow \epsilon_1 \equiv \epsilon(t, \bar{t}, n_t, n_{\bar{t}}), \epsilon_2 \equiv \epsilon(Q, \bar{t}, n_t, n_{\bar{t}})$ and $\epsilon_3 \equiv \epsilon(Q, t, n_t, n_{\bar{t}}).$
 - By using A, CP-mixed scenarios separated by more than $\sim 20\sigma$.
 - Angular distributions, phase shift varies according to the values of κ_t and $\tilde{\kappa}_t$.
 - TPs that incorporate H and the momenta of leptons less sensitive.
- Combination $\epsilon_4 \equiv \epsilon_3 \epsilon_2$, sensitivity increases by at least 2.8 σ w.r.t ϵ_1 - ϵ_3 .
- If the momenta of the leptons are used intead of spin vectors (ϵ_8), the asymmetry decreases.
- Two observables that avoid the difficulty of fully reconstructing t and \overline{t} : ϵ_9 , where t, \overline{t} are replaced by b, \overline{b} . ϵ_{10} , where t, \overline{t} are replaced by their visible parts.
 - ϵ_{10} more sensitive leading to a separation of $\sim 16\sigma$.
- With 5×10^3 and 1×10^4 events, $\mathcal{A}(\epsilon_4)$ and $\mathcal{A}(\epsilon_{10})$ respectively are still useful for testing the CP-mixed hypotheses. Separations of order $\sim 6\sigma$ for luminosities between 300-600 fb⁻¹.
- Necessary to further study the most promising observables by performing a complete simulation (hadronization and detector effects) for the signal and backgrounds and applying kinematic reconstruction method.